Effect of the solvent on the kinetics of thermal decomposition of acetylcyclohexylsulfonyl peroxide

R. N. Zaripov, * R. L. Safiullin, E. I. Yaubasarova, A. A. Mukhametzyanova, and V. D. Komissarov

Institute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.

Fax: 007 (347 2) 34 2914

The kinetics of the decomposition of acetylcyclohexylsulfonyl peroxide (ACSP) in CCl₄, benzene, toluene, ethylbenzene, cumene, acetonitrile, ethanol, and 2-propanol in an atmosphere of O_2 were studied at 40–70 °C. The rate constants (k_0) and activation parameters of the monomolecular decomposition of ACSP were determined. A linear dependence between log A_0 and activation energy E_0 (compensation effect) was established. The dependence of k_0 on the nature of a solvent is described by the four-parameter Koppel—Palm equation.

Key words: alkylsulfonyl peroxides, thermal decomposition, kinetics, solvent effect; compensation effect.

The thermal decomposition of acetylcyclohexylsulfonyl peroxide (ACSP) in a medium of saturated hydrocarbon (*n*-decane, cyclohexane) in the absence of oxygen proceeds *via* a radical chain mechanism. The following reactions are the primary stages of the decomposition of ACSP:

- 1. $RSO_2OOC(O)Me \longrightarrow RSO_2O' + MeCO_2'$,
- 2. RSO₂OOC(O)Me ----- P₂,

where P_2 is the molecular product of the corresponding (second) stage.

Oxygen is a strong inhibitor of the induced chain decomposition of ACSP in alkanes. In the presence of O_2 , the rate of decomposition of ACSP is described by the equation¹

$$-dC/dt = (k_1 + k_2)C = k_0C, (1)$$

which can be used to determine the rate constant of monomolecular decomposition (k_0) (C is the concentration of ACSP, k_1 and k_2 are the rate constants of the corresponding stages).

In the present work, the dependence of k_0 on the nature of the solvent was studied.

Experimental

The reaction was carried out in an atmosphere of oxygen at 40—70 °C in the following solvents (the maximum range of change in the initial concentration of ACSP is indicated in parentheses, C_0 /mmol L⁻¹): CCl₄ (4—37), PhH (5—27), PhMe (6—40), PhEt (3—53), PhCMe₂H (4—39), MeCN (3—35), EtOH (2—35), MeCHOHMe (3—29). The kinetics of the

process were studied by analyzing the consumption of ACSP using a procedure described previously.¹

Acetylcyclohexylsulfonyl peroxide was synthesized and purified by the procedure presented in the same work.¹ The solvents used were purified by known methods.²

Results and Discussion

The kinetics of the thermal decomposition of ACSP obey the first-order equation:

$$-dC/dt = k^*C. (2)$$

The rate constant k' was calculated from the semilogarithmic anamorphoses of the curves of the consumption of ACSP (30-50% conversion).

In relatively inert solvents (CCl_4 , PhH, and MeCN), within the accuracy of the determination ($\pm 15-20\%$) the rate constant k' is almost independent of the initial concentration and coincides with k_0 according to Eqs. (1) and (2).

However, in other solvents, a weak increase in k' is observed as C_0 increases, which indicates that ACSP is involved in reactions with the active intermediates formed (the dependence of k' on C_0 for the reaction in a solution of ethylbenzene at 60 °C is presented in Fig. 1 as an example). In this case, the k_0 constant was determined by extrapolation of this dependence to the zero concentration of ACSP, *i.e.*, to the conditions under which secondary processes involving ACSP are ruled out:

$$k' = k_0 + \alpha C_0, \tag{3}$$

where α is a proportionality coefficient.

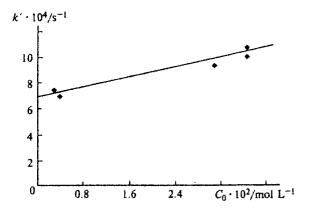


Fig. 1. Dependence of the experimental rate constant of the decomposition of ACSP (k') on its initial concentration (C_0) (ethylbenzene, 60 °C).

The rate constants k_0 obtained by Eq. (3) are presented in Table 1 along with the k_0 values determined in solutions of CCl₄, PhH, and MeCN. The activation parameters of the reaction calculated using these values are presented in Table 2.

Table 1. Dependences of the rate constant of the monomolecular decomposition of ACSP (k_0) on the nature of the solvent and on the temperature

Solvent	$k_0 \cdot 10^4/\text{s}^{-1}$				
	40 °C	50 °C	60 °C	70 °C	
CCl ₄	0.21	1.0	3.9	_	
PhH	0.38	1.4	5.0	17.5	
PhMe	0.50	1.8	6.3	18.6	
PhEt	0.60	1.9	6.9	19.2	
PhCMe ₂ H	0.37	1.4	5.3		
MeCN ~	0.06	0.4	1.1		
EtOH	0.22	0.7	2.4		
MeCHOHMe	0.15	0.6	2.2	6.5	

Table 2. Dependence of the activation parameters (log A_0 and E_0) of the decomposition of ACSP on the nature of the solvent

Solvent	log A ₀	E_0 /kJ mol $^{-1}$	
n-C ₁₀ H ₂₂ *	16.2	123	
CCI4	16.5	127	
PhH	14.5	114	
PhMe	13.8	108	
PhEt	13.1	104	
PhCMe ₂ H	14.7	115	
MeCN	15.8	126	
EtOH	12.5	103	
МеСНОНМе	14.0	113	

Note. The errors of the determination of $\log A_0$ and E_0 are 0.1-0.6 and 2-10 kJ mol^{-1} , respectively. • Ref. 1.

Table 3. Dependence of the rate constant k_0 on the properties of solvent

Solvent	Y	P	E	В	$-\log k_0$	
					experi- ment	calcu- lation ^a
		T	= 40	°C		
n-C ₁₀ H ₂₂	0.1946	0.2393	0	0	4.46	4.4
CCI.	0.2222	0.2670	0	0	4.7	4.6
PhH	0.2266	0.2860	2.1	48	4.5	4.4
PhMe	0.2351	0.2845	1.3	58	4.2	4.4
PhEt	0.2379	0.2846	1.3	58	4.3	4.4
PhCMe ₂ H	0.2358	0.2828	1.3	58	4.5	4.4
MeCN	0.4784	0.2057	5.2	160	5.2	5.2
EtOH	0.4672	0.2170	11.6	235	4.7	4.7
МеСНОНМе	0.4579	0.2259	8.7	236	4.8	4.7
 			= 50			
n-C ₁₀ H ₂₂	0.1989	0.2368	0	0	3.7 <i>b</i>	3.8
CCI4	0.2204	0.2642	0	0	4.0	4.0
PhH	0.2246	0.2829	2.1	48	3.8	3.8
PhMe	0.2329	0.2819	1.3	58	3.7	3.8
PhEt	0.2356	0.2819	1.3	58	3.7	3.8
PhCMe ₂ H	0.2338	0.2803	1.3	58	3.9	3.8
MeCN	0.4773	0.2031	5.2	160	4.6	4.6
EtOH	0.4651	0.2148	11.6	235	4.1	4.2
McCHOHMe	0.4543	0.2238	8.7	236	4.2	4.1
				°C		
n-C ₁₀ H ₂₂	0.1911	0.2344	0	0	3.16	3.1
CCI ₄	0.2186	0.2614	0	0	3.4	3.3
PhH	0.2226	0.2797	2.1	48	3.3	3.2
PhMe	0.2307	0.2790	1.3	58	3.1	3.2
PhEt	0.2333	0.2791	1.3	58	3.2	3.3
PhCMe ₂ H	0.2317	0.2778	1.3	58	3.3	3.2
MeCN	0.4754	0.2005	5.2	160	4.0	4.0
EtOH	0.4629	0.2126	11.6	235	3.6	3.7
МеСНОНМе	0.4499	0.2219	8.7	236	3.6	3.6
			= 70	°C		
n-C ₁₀ H ₂₂	0.1893	0.2319	0	0	2.5 b	2.5
CCI ₄	0.2167	0.2585	0	0	2.8c	2.8
PhH	0.2205	0.2765	2.1	48	2.8	2.7
PhMe	0.2288	0.2761	1.3	58	2.6	2.7
PhEt	0.2309	0.2764	1.3	58	2.7	2.7
PhCMe ₂ H	0.2299	0.2753	1.3	58	2.80	2.7
MeCN	0.4739	0.2979	5.2	160	3.4c	3.4
EtOH	0.4603	0.2103	11.6	235	3.2¢	3.2
MeCHOHMe	0.4449	0.2195	8.7	236	3.1	3.1

^a Calculated by Eq. (4) from the data in Table 4 to illustrate the quality of the description.

As can be seen from the data in Table 2, the determined values of the pre-exponential factors are characteristic of monomolecular reactions. The analysis of the values presented in Table 2 shows a linear dependence between $\log A_0$ and E_0 with the correlation coefficient r=0.980 (compensation effect):

$$\log A_0 = -(2.7 \pm 1.3) + (1.5 \pm 0.1) \cdot 10^{-4} E_0.$$

^b Ref. 2.

^c Calculated from the data in Table 2.

Table 4. Temperature dependence of the parameters of Eq. (4)

T/°C	-log	k ₀ y	р	e · 103	b · 103	r
40	2.5	-6.872	-1.667	1.303	6.111	0.946
50	1.6	-6.455	-3.324	-3.817	5.069	0.966
60	1.2	-5.761	-3.575	-6.699	4.306	0.977
70	0.7	-5.1063	-3.959	-7.965	3.237	0.987

The effect of the solvent on the rate constant k_0 is described by the four-parameter Koppel—Palm equation,³ which takes into account both nonspecific and specific solvations:

$$\log k_0 = \log k_0^{\,a} + yY + pP + eE + bB. \tag{4}$$

Here $Y = (\varepsilon - 1)/(2\varepsilon + 1)$; $P = (n^2 + 2)$; E and B are empirical parameters of the electrophilicity and nucleophilicity of the solvent, respectively; k_0° is the rate constant of the gas-phase reaction; y, p, e, and b are coefficients characterizing the sensitivity of the reaction to the corresponding parameter.

The results of the analysis of the kinetic data in terms of Eq. (4) are presented in Tables 3 and 4. For the

calculations, the E and B values were taken from Ref. 3, the ε and n values were taken from Refs. 4 and 5, and the refractive index of nonadecane was used for decane.⁵

This work was financially supported by the Russian Foundation for Basic Research (Project No. 93-03-05231).

References

- R. N. Zaripov, R. L. Safiullin, and E. I. Yaubasarova, Izv. Akad. Nauk, Ser. Khim., 1995, 1049 [Russ. Chem. Bull., 1995, 44, 1011 (Engl. Transl).].
- A. Weissberger, E. S. Proskauer, J. A. Riddick, and E. E. Toops, Organic Solvents: Physical Properties and Methods of Application. Technique of Organic Chemistry, Interscience, New York, 1995.
- 3. V. A. Palm, Osnovy kolichestvennoi teorii organicheskikh reaktsii [Bases of Quantitative Theory of Organic Reactions], Khimiya, Moscow, 1977 (in Russian).
- 4. Spravochnik khimika [Chemist's Handbook], 1, GONTI, Moscow, 1962 (in Russian).
- Yu. A. Akhadov, Dielektricheskie svoistva chistykh zhidkostei [Dielectric Properties of Pure Liquids], Izd. Standartov, Moscow, 1972 (in Russian).

Received September 30, 1996; in revised form December 10, 1996